Mode: online

Session 2020 -2021 (November 2020 to 31st

August 2021) CC – 01 Semester - I

Course Title: Introduction to microbiology and

microbial diversity.

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
History of development of		Development of Microbiology as a discipline.	3	Lecture (2classes), Feedback & Power Point presentation (1 class)
Microbiology	15	Spontaneous Generation vs Biogenesis.	2	Lecture(2 classes)
Duration of				
each class is 1hr		Contributions of Antony Von Leeuwenhoek, Louis Pasteur,Robert Koch, Joseph Lister, Alexander Fleming.	5	Lecture (4 classes) & Feedback (1 class)
		Germ Theory of Disease, development of Microbiological Techniques and Golden Era of Microbiology.	3	Lecture (3 classes)
		Question -Answer Discussion.	1	1 class
		Internal Assessment	1	1 class

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

CC - 03

Semester - II Course Title: Biochemistry

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
		Families of Monosaccharides: Aldoses,ketoses,trioses,tetrose s, Pentoses And Hexoses.	2	Lecture (2classes),
Carbohydrates Duration of each class is 1hr	18	Stereoisomerism of monosaccharides, epimers, Mutarotation and anomers of glucose. Furanose and pyranose forms of glucose and fructose, Haworth projection formulae for glucose; chair and boat forms of glucose, muramic acid, N-acetyl neuraminic acid.	8	Lecture (6 classes) and Feedback (2 classes)
		Disaccharides; concept of reducing and non-reducing sugars, occurrence and Haworth projections of maltose, lactose, and sucrose, Polysaccharides, storage polysaccharides, starch and glycogen.	3	Lecture (3 classes)
		Structural Polysaccharides, cellulose and chitin, reactions of carbohydrates	2	Lecture (2 classes)
		Question -Answer Discussion	1	1 class
		Internal Assessment	2	2 classes

Mode: offline

Session 2020 -2021(November 2020 to 31st August 2021)

CC-05Semester - III

Course Title: Microbial Physiology and Metabolism Course Code: BMCBCCHT301

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Chemoheterotr ophic Metabolism- Anaerobic respiration and fermentation	8	Anaerobic respiration with special reference to dissimilatory nitrate reduction (Denitrification; nitrate/nitriteandnitrate/ ammonia respiration; fermentative nitrate reduction)-	4	Lecture (2classes) & Power Point Presentation(2 classes)
	0	Fermentation-Alcohol fermentation and Pasteur effect; Lactate fermentation (homofermentative and heterofermentative pathways)	2	Lecture (2 classes)
Duration of each class is 1hr		Question and Answer Discussion	1	1 class
		Internal Assessment	1	1 class

Lesson plan: Mr.Ratul Mukherjee Mode: Online & Offline Mode

Session 2020 -2021(November 2020 to 31st August 2021)

CC - 06**Semester-III**

Course Title: Cell Biology and Molecular Biology Course Code: BMCBCCHT302

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
		Bidirectional and unidirectional replication, semiconservative, semidiscontinuous Replication	2	Lecture (2classes)- Online Mode
Replication of DNA Duration of each class is	12	Mechanism of DNA replication:Enzymes and proteins involved in DNA replication -DNA polymerases, DNA ligase, primase, telomerase- for replication of linear ends.	4	Lecture (2classes) & Power Point Presentation(2 classes)
1hr		Various models of DNA replication including rolling circle, D-loop (mitochondrial), Θ (theta)mode of replication and other accessory protein.	3	Lecture(2 classes) & Feedback session(1 class)
		Comparitive study of DNA Replication of Prokaryotes and eukaryotes (2L)	2	Lecture (2 classes)
		Internal Assessment	1	1 class

Mode: offline

Session 2020 -2021(November 2020 to 31st August 2021)

CC – 07 Semester-III

Course Title: Laboratory Techniques in Microbial Physiology, Molecular and Cell Biology of Microbes

Course Code: BMCBCCHS303

Name of the experiments	Alloted Hours
1. Isolation	
ofGeno	
mic	
DNA	
from	
E.coli.	Work out: 3Hrs; Incubation period: 24-48 Hrs Result & observation: 3 Hrs,
2. Demons	Recapitulation
tration	
of	
thermal	
death	
time and	
decimal	
reductio n time	
of E.coli.	
of Licon.	
3. Demons	
tration	
of	
alcoholi	
c	
ferment	
ation.	

Mode: offline

Session 2020 -2021(November 2020 to 31st August 2021)

SEC-1

Semester - III

Course Title: Biofertilizer and Biopesticides Course Code: BMCBSEHT305

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
		Phosphate solubilizing microbes-Isolation, characterization	2	Lecture (2classes)
Phosphate Solubilizer	4	Mass inoculum production Field Application	1	Lecture (1classes)
Duration of each class is 1hr				
		Internal Assessment	1	1 class

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

CC - 08**Semester: IV**

Course Title: Microbial Genetics and Recombinant DNA

Technology(RDT)
Course Code: BMCBCCHT401

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
		Basic concepts of genetic engineering, Cloning Tools; Restriction modification systems: Types I, II and III	4	Lecture (4classes)
Molecular Cloning-Tools and Strategies		Mode of action, nomenclature, applications of Type II restriction	2	Lecture (2 classes)
Duration of	20	Enzymes in genetic engineering, DNA modifying enzymes and their applications: DNA polymerases. Terminal deoxynucleotidyl transferase, kinases and phosphatases, and DNA ligases.	4	Lecture (4 classes)
each class is 1hr		Cloning Vectors: Definition and Properties Plasmid vectors: pBR and pUC series.	3	Lecture (2 classes) & Feedback (1 class)
		Bacteriophage lambda and M13 based vectors Cosmids, BACs, YACs Use of cloning vectors	3	Lecture (2 classes) & Feedback (1 class
		Question -Answer Discussion.	2	2classes
		Internal Assessment	2	2 classes

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

CC - 09 Semester - IV

Course Title: Industrial Food and Dairy Microbiology. Course Code: BMCBCCHT402

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Fermented		Dairy starter cultures, fermented dairy products: yogurt, dahi and Cheese	3	Lecture (3classes),
Foods Duration of	10	Other fermented foods: dosa, sauerkraut, soysauce	3	Lecture(3 classes)
each class is 1hr		Probiotics: Health benefits Types of microorganisms used, microbial cell as food(single cell protein)	2	Lecture (2 classes)
		Question- Answer Discussion .	1	1 class
		Internal Assessment	1	1 class

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

CC - 09Semester - IV

Course Title: Industrial Food and Dairy Microbiology. Course Code: BMCBCCHT402

Module 2	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
		Alcoholic beverages (beer, wine)	2	Lecture (2classes)
Microbial production of industrial products (microorganisms	10	Organic Acids	2	Lecture (2 classes)
involved, media, Fermentation conditions, downstream processing and uses)		Organic Solvents	2	Lecture (2 classes)
Duration of each class is		hormones(insulin productionHumulin	2	Lecture (2 classes)
1hr		Question -Answer Discussion.	1	1 class
		Internal Assessment	1	1 class

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

SEC – 2 Semester-IV

Course Title: Microbiological analysis of air and water Course Code: BMCBSEHT405

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Air Sample Collection and		Bioaerosol sampling, air samplers	2	Lectures(2 classes)
Analysis Duration of	7	Methods of analysis, CFU, culture media for bacteria and fungi	2	Lectures (2 classes)
each class is 1hr		Identification characteristic	1	Lecture (1 class)
		Question-Answer Discussion	1	1 class
		Internal Assessment	1	1 class

Mode: online & Offline Session 2020 -2021(November 2020 to 31st August 2021)

CC-11 Semester-V

Course Title: Immunology and Medical Microbiology Course Code: BMCBCCHT501

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Components of Immune System Duration of each class is	12	Antigens: Characteristics of an antigen (Foreignness, Molecular size and Heterogeneity); Haptens; Epitopes (T&B cell epitopes); T-dependent and T-independent antigens; Adjuvants	3	Lectures(2 classes)& PPT (1 Class)
1hr		Antibodies: Structure, Types, Functions and Properties of antibodies; Antigenic Determinants on antibodies (Isotypic, allotypic, idiotypic); Monoclonal and Chimeric antibodies.	3	Lectures (2 classes)& PPT (1 Class)
		MHC: Structure and Functions of MHCI & II molecules; Antigen processing and Presentation (Cytosolic and Endocytic pathways)	3	Lecture (2classes)& PPT (1 Class)

Question-Answer Discussion	2	2 classes
Internal Assessment	1	1 class

Mode: online & Offline Session 2020 -2021(November 2020 to 31st August 2021)

CC-11 Semester-V

Course Title: Immunology and Medical Microbiology Course Code: BMCBCCHT501

Module 2	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Normal Microflora of Human body		Normal micro flora of the human body: Importance of normal Microflora.	1	Lectures(1 class)
and Host Pathogen Interaction	8	Normal Microflora of skin , throat	2	Lectures (2 classes)
Duration of each class is 1hr		NMF of gastrointestinal tract, urogenital tract	2	Lecture (1 class) & PPT(1 Class)
		Host pathogen interaction : Definitions-Infection, Invasion, Pathogen, Pathogenicity, Virulence.	2	Lecture (2 Classes)
		Internal Assessment	1	1 class

Mode: offline

Session 2020 -2021(November 2020 to 31st August 2021)

DSE-1 Semester-V

Course Title: Microbes in sustainable agriculture and

development

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Soil Microbiology		Soil as Microbial Habitat	2	Lectures(2 class)
Duration of each class is 1hr	8	Soil Profile and Properties	2	Lectures (2 classes)
		Soil formation, Diversity and distribution of microorganisms in soil	2	Lecture (1 class) & PPT(1 Class)
		Question and Answer Discussion	1	1 class
		Internal Assessment	1	1 class

Mode: online
Session 2020 -2021(November 2020 to 31st August 2021)

DSE-2 Semester-V

Course Title: Instrumentation and Biotechniques Course Code: BMCBDSHT2

Module 1	Alloted Lectures				
Electrophoresis		Principle and applications of native polyacrylamide gel electrophoresis	4	Lectures(2 classes) & PPT (2 Classes)	
Duration of each class is 1hr	14	SDS polyacrylamide gel electrophoresis	2	Lectures (2 classes)	
		2D gel electrophoresis, isoelectric focusing	4	Lecture (2 classes) & PPT(2 Classes)	
		Zymogram preparation and	2	Lecture (2 Classes)	
		Question and Answer session	1	1 class	
		Internal Assessment	1	1 class	

Lesson plan: Mr.Ratul Mukherjee **Mode:** online **Session 2020 -2021**(November 2020 to 31st August 2021)

DSE-3 Semester-V

Course Title: Microbial Biotechnology Course Code: BMCBDSHT3

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Applications of Microbes in Biotransformat ions		Microbial based transformation of steroids and sterols	2	Lectures(1 class) & PPT (1 Class)
Duration of each class is 1hr	4	Question and Answer Session	1	1 class
		Internal Assessment	1	1 class

Lesson plan: Mr.Ratul Mukherjee **Mode:** online **Session 2020 -2021**(November 2020 to 31st August 2021)

CC-13 Semester-VI

Course Title: Environmental Microbiology Course Code: BMCBCCHT601

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Biogeochemical Cycling Duration of each class is	14	Carbon cycle: Microbial degradation of cellulose, hemicelluloses, lignin and chitin	3	Lectures(2 classes) & PPT (1 Class)
1hr		Nitrogen cycle: Nitrogen fixation, ammonification, nitrification, denitrification and nitrate Reduction	4	Lectures (2 classes) & PPT(2 Classes)
		Phosphorus cycle: Phosphate immobilization and solubilisation.	3	Lecture(2 classes) & PPT(1 Class)
		Sulphur cycle: Microbes involved in sulphur cycle	2	Lecture (2 Classes)

		1	1 class
	On the self-		
	Question and Answer session Internal Assessment	1	1 class

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

CC-14 Semester-VI

Course Title: Applied Course in Environmental

Microbiology.

Course Code: BMCBCCHS602

Name of the experiment	Alloted Hours
Assessment of microbiological quality and Microbiological examination of water (drinking water, supply water, pond water)by following methods I)Presumptive test II)Confirmatory test III)Completed test for coliform IV) Determination of MPN index.	Work out: 3Hrs; Incubation period: 24-48 Hrs; Result & observation: 3 Hrs and recapitulation

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

DSE-3 Semester-VI

Course Title: Biomathematics and Biostatistics

Module 1	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Introduction		Defination of sample and population	1	Lectures(1 class)
Duration of each class is 1hr	12	Concept of variable	1	Lecture (1class)
		Frequency Distribution and its graphical representation	3	Lecture(2 classes) & PPT(1class)
		Mean,Median,Mode	4	Lecture (4 classes)
		Standard Deviation, Standard Error	2	Lecture (2 classes)
		Internal Assessment	1	1 class

Lesson plan: Mr.Ratul Mukherjee **Mode:** online **Session 2020 -2021**(November 2020 to 31st August 2021)

DSE-3 Semester-VI

Course Title: Biomathematics and Biostatistics

Module 2	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Elementary Statistics		Test of statistical significance	4	Lectures(2 classes) & PPT (2 Classes)
Duration of each class is 1hr	12	Simple correlation and regression	3	Lectures (3 classes)
		Analysis of variance	4	Lectures(2 classes) & PPT (2 Classes)
		Internal Assessment	1	1 class

Mode: online
Session 2020 -2021(November 2020 to 31st August 2021)

DSE-3 Semester-VI

Course Title: Biomathematics and Biostatistics

Module 3	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Preliminary		Sampling Parameters	1	Lectures(1 class)
Notion on sampling Duration of each class is 1hr	6	Difference between sample and population	1	Lectures (1 class)
		Sampling errors, Difference between Parametric and No- Parametric statistics	4	Lectures(2 classes) & PPT (2 Classes)
		Internal Assessment	2	2 class

Mode: online

Session 2020 -2021(November 2020 to 31st August 2021)

DSE-3 Semester-VI

Course Title: Biomathematics and Biostatistics

Module 4	Alloted Lectures	Sub Module	Classes needed	Teaching- Learning Methodology
Test of significance		Sampling distribution and Standard Error	2	Lectures(2 classes)
Duration of each class is 1hr	16	Testing of hypothesis, Level of significance and Degree of freedom	4	Lectures (4 class)
		Large sample test based On normal distribution	4	Lectures(2 classes) & PPT (2 Classes)
		z-test,f-test and chi-test	4	Lecture(4 classes)
		Internal Assessment	2	2 classes

LESSON PLAN SCHEME OF WORK 2021-22 J.K. COLLEGE

SUBJECT :MICROBIOLOGY

DEPARTMENT OF MICROBIOLOGY

FIRST SEMESTER PAPER-BMCBCCHT-101 LECTURER NAME: SWARUP MUKHERJEE

	: SWARUP MUKHERJEI			ı	
Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ TOPIC TO BE COVERED	Allotted lectures	No of hours allotted
Unit 2.Bacteria: General account & Economic importance of Low G+C(Firmicutes)	Students will be able to comprehend about general characteristics of Mycoplasma and diseases caused by mycoplasmas different species.	Lecture method,ppt,pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	1. Scientific classification of Firmicutes, its characteristics, and its importance.	3 lectures.	1 hours X 3= 3 hours
Unit 2.Bacteria: General account & Economic importance of chlamydia	Students will be able to comprehend about general characteristics of chlamydia, diseases caused by chlamydia. Its life cycle.	DO	1.Scientific classification of chlamydia 2. Its characteristics. Lifecycle of Chlamydia 3. Pathogenic nature, obligate intracellular parasitism. 4. Diseases caused by different species of Chlamydia.	4 Lectures	1 hours X 4= 4 hours
Unit 2.Bacteria: General account & Economic importance of Rickettsia.	Students will be able to comprehend about general characteristics of Rickettsia, diseases caused by this. Its life cycle.	DO	1.Scientific classification of Rickettsia 2. General characteristics and Lifecycle of Rickettsia 3. Pathogenic nature, obligate intracellular parasitism. 4.Diseses caused by different species of Rickettsia	4 Lectures	1 hours X 4= 4 hours
Unit 2.Bacteria: General account & Economic importance of High G+C Actinobacteria.	Students will be able to comprehend about general characteristics of Actinobacteria. Diseases caused by this. Its life cycle.	DO	1.Scientific classification of Phylum Actinobacteria 2. General characteristics and Lifecycle of Actinobacteria. 3. Pathogenic nature, obligate intracellular parasitism. 4. Diseases caused by different species of Actinobacteria.	4 Lectures	1 hours X 4= 4 hours
Unit 2.Bacteria: General account & Economic importance of Cyanobacteria.	Students will be able to comprehend about general characteristics of Cyanobacteria and Why are cyanobacteria important to Humans.	DO	Scientific classification of Cyanobacteria. General characteristics Cyanobacteria. CYANOBACTERIA: Precious Bio-resource in agriculture.	4 Lectures	1 hours X 4= 4 hours
Unit 2.Bacteria: General account & Economic importance of Archae bacteria.	Students will be able to comprehend about general characteristics and types of Archaebacteria, its importance.	DO	Eubacteria v/s Archaebacteria. Special feature of Archaebacteria. History of domain Archae. History of Archaebacteria. Importance of Archaebacteria.	5 Lectures	1 hours X 5= 5 hours

LESSON PLAN

SCHEME OF WORK 2021-22

J.K. COLLEGE

DEPARTMENT OF MICROBIOLOGY SUBJECT :MICROBIOLOGY

FIRST SEMESTER PAPER-BMCBCCHT-102 LECTURER NAME : SWARUP MUKHERJEE

Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ TOPICS TO BE COVERED	Allotted lectures	No of hours allotted
UNIT 3 Microscopy &stain and staining techniques	Students will be able to comprehend about microscopy and different types and working principles about e.g light microscopy, and electron microscopy, fluorescent microscopy	Lecture method,ppt,pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	 Different types of microscope, history, diagram, principle of of optics. Bright field and dark field microscope. Phase contrast, fluorescent microscope principle and uses. Electron microscope principle, schematic diagram, uses. EM VS light & SEM and tem differences. 	4 Lectures	1 hours X 4= 4 hours
	Students will be able to comprehend about stains and staining techniques in microbiology	DO	Classification of stains. Dye vs Stain Principle of different staining technique.	4 Lectures	1 hours X 4= 4 hours

LESSON PLAN SCHEME OF WORK 2021-22 J.K. COLLEGE

DEPATMENT OF MICROBIOLOGY

SUBJECT :MICROBIOLOGY

THIRD SEMESTER PAPER-BMCBCCHT-301(Microbial physiology and metabolism)

LECTURER NAME: SWARUP MUKHERJEE

Learning block	Student learning outcomes (SLOs)	STRATEGY	lotted ctures	No of hours allotted
UNIT 1. Microbial growth and effect of environment on microbial growth	Students will be able to understand the bacterial growth, measurement of microbial growth in different culture method. different factors that affect microbial growth	Lecture method,ppt,pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	 10 ctures	1 hours X 10= 10 hours

LESSON PLAN
SCHEME OF WORK 2021-22
J.K. COLLEGE
DEPATMENT OF MICROBIOLOGY
SUBJECT :MICROBIOLOGY

THIRD SEMESTER PAPER-BMCBCCHT-302(Cell biology and Molecular biology)								
LECTURER NAME : SWARUP MUKHERJEE								
Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ TOPICS TO BE COVERED	Allotted lectures	No of hours allotted			
UNIT :4	Students will be able to	Lecture	 Central dogma of protein synthesis. 	6	1 hours			
Transcription in	comprehend about	method,ppt,pdf	2. Replication vs transcription.	Lectures	X 6= 6			
prokaryotes	Central Dogma of	notes ,Question	3. Differences between transcription in		hours			
	Protein Synthesis,	answer technique,	eukaryotes and prokaryotes.					
	Prokaryotic and	MCQ discussion,,	4. Study of different transcriptional					
	eukaryotic transcription.	internal assessment	factors and their function in					
	Basic idea about post	exam	eukaryotes and prokaryotes.					
	Transcriptional		post Transcriptional modifications					
	modifications							

THIRD SEMESTER

 $PAPER-BMCBCCHS-303 (LABORATORY\ TECHNIQUES\ IN\ MICROBIAL\ PHYSIOLOGY, MOLECULAR\ AND\ CELL\ BIOLOGY)$

PRACTICAL PAPER

Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ METHODOLOGY OF THE PRACTICALS	Allotted lectures	No of hours allotted
1.study and plot of bacterial growth curve by turbidometric method	Students will be able to comprehend about bacterial growth measurement techniques by tubidometric or optical density measurement technique.	Lecture about the protocol of the practical. Instrument handling (colorimeter/ spectrophotometer). Protocol writing in Lab records, Viva voce test, for internal assessment.	1.24 hours active bacterial culture preparation prior to start the practical. 2. Ascetically inoculation of cultures in sterilize nutrient broth. 3. Study the O.D half an hour time interval. 4.graph preparation according to the result	6 lectures	1 hours X 6= 6 hours
2.Effect of temperature n growth of Escherichia coli	Students will be able to comprehend about The cardinal temperature, different types of bacteria according to their temperature relationship.	Lecture about the protocol of the practical. Instrument handling (colorimeter/ spectrophotometer). Protocol writing in Lab records, Viva voce test, for internal assessment.	1.24 hours active bacterial culture Escherichia coli preparation prior to start the practical. 2. Ascetically inoculation of cultures in sterilize labeled nutrient broth. 3 Incubate conical flasks at different temperature 3.study the O.D after 24 hours incubation. 4.graph preparation according to the result	6 lectures	1 hours X 6= 6 hours
3Effect of pH on growth of Escherichia coli	Students will be able to comprehend about The pH, different types of bacteria according to their pH relationship.	Lecture about the protocol of the practical. Instrument handling (colorimeter/spectrophotometer).	1.24 hours active bacterial culture Escherichia coli preparation prior to start the practical and different broth preparation. 2. Ascetically inoculation of cultures in sterilize labeled nutrient broth.	6 lectures	1 hours X 6= 6

		Protocol writing in Lab records, Viva voce test, for internal assessment.	3 Incubate conical flasks at 37 degree centigrade. 3. Study the O.D after 24 hours incubation. 4.graph preparation according to the result		hours
4.Effect of heavy metals on growth of Escherichia coli	Students will be able to comprehend about The oligodynamic action of different heavy metals	Lecture about the protocol of the practical. Instrument handling (colorimeter/ spectrophotometer). Protocol writing in Lab records, Viva voce test, for internal assessment.	1.24 hours active bacterial culture <i>Escherichia col</i> i preparation prior to start the practical and different broth/solid media preparation. 2. carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
4.Effect of osmotic pressure on growth of Escherichia coli	Students will be able to comprehend about The osmosis ,plasmolysis,deplasmolysis, Effect of different heavy metals on Escherichia coli.	Lecture about the protocol of the practical. Instrument handling (colorimeter/ spectrophotometer). Protocol writing in Lab records, Viva voce test, for internal assessment.	1.24 hours active bacterial culture <i>Escherichia col</i> i preparation prior to start the practical and different broth/solid media preparation. 2. carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours

THIRD SEMESTER

PAPER-BMCBSEHT-305(BIOFERTILIZER &BIO PESTICIDES)

PRACTICAL PAPER

LECTURER NAME: SWARUP MUKHERJEE

Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ TOPICS TO BE COVERED	Allotted lectures	No of hours allotted
UNIT 2 Non Symbiotic Nitrogen Fixers	Helps students develop the knowledge about nonsymbiotic nitrogen fixers	Lecture method, ppt, pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	Different microbial association. Nitrogen fixers. Symbiotic nitrogen fixers ,and its uses	2 lectures	1hourX2=2 hours

LESSON PLAN SCHEME OF WORK 2021-22

J.K. COLLEGE

DEPATMENT OF MICROBIOLOGY SUBJECT :MICROBIOLOGY

FOURTH SEMESTER

PAPER-BMCBCCHT 402 (INDUSTRIAL, FOOD AND DIARY MICROBIOLOGY)

LECTURER NAME: SWARUP MUKHERJEE

Learning block	Student learning outcomes	STRATEGY	ASSESSMENT/ TOPICS TO BE	Allotted	No of hours
Learning order	(SLOs)	SHUHEGI	COVERED	lectures	allotted
UNIT 5	Helps students develop the	Lecture method, PPT	Food intoxication by different	4	1hourX4=4
Food borne	knowledge about food	presentation, PDF	bacterial species.	lectures	hours
disease(causative	intoxication, and food	notes ,Question	2.Food infection by different bacterial		
agents, foods	infection.	answer technique,	species		
involved,		MCQ discussion,,			
symptoms and		internal assessment			
preventive		exam			
measures					

P.T.O

LESSON PLAN SCHEME OF WORK 2021-22 J.K. COLLEGE DEPATMENT OF MICROBIOLOGY SUBJECT :MICROBIOLOGY

FOURTH SEMESTER

PAPER-BMCBCCHT 402 (INDUSTRIAL, FOOD AND DIARY MICROBIOLOGY)

Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ METHODOLOGY OF THE PRACTICALS	Allotted lectures	No of hours allotted
1.Determination of viral plaque assay	Students will be able to comprehend about the technique to prepare viral plaque, and thus quantify virus.	Lecture about the protocol of the practical. Different media for virus isolation. Protocol writing in Lab records, Viva voce test for internal assessment.	1.24 hours active bacterial culture <i>Escherichia col</i> i preparation prior to start the practical and different broth/solid media preparation. 2. DSPB PREPARATION. 3. Carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
2 Examination of milk quality by MBRT TEST	Students will be able to comprehend about the technique to detect the grade of milk	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test	Carry out the practical ascetically		

		for internal assessment.	according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
3.Kirby- Bauer disc diffusion of antibiotic susceptibility test	Students will be able to comprehend about the antibiogram techniques for pathogenic organisms	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test for internal assessment.	Carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
4.Determination of MIC of antibiotic (penicillin& streptomycin)using gram + and – ve bacteria	Students will be able to comprehend about the Minimum inhibitory concentration and minimum bactericidal concentration of antibiotic.	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test, for internal assessment.	Carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
5.Assay of antibiotic residue in milk	Helps students develop the knowledge to test antibiotic if present in milk, and its side effects in our body especially for infants.	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test, for internal assessment.	Carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
6.Detection of Antimicrobial compounds in plant materials	Helps students develop the knowledge about antimicrobial activity of different plant extract,	Lecture about the ethno botany, protocol of the practical. Protocol writing in Lab records, Viva voce test, for internal assessment.	Carry out the practical ascetically according to the protocols provide.	6 lectures	1 hours X 6= 6 hours
7.Production of Bioinsecticides by using Bacillus thuringenesis	Students will be able to comprehend about the Bio insecticides, it's safer role to humans and the environment than conventional chemical pesticides.	Lecture about the bio pesticides, its mode of action.invivo and invitro preparation technique. Protocol of the practical. Protocol writing in Lab records, Viva voce test, for internal assessment.	1. Pure culture preparation of Bacillus thuringenesis. 2. media preparation for bt toxin production. 3. isolation of Bt after production. 4. spray the solution of Bt in caterpillar's.	6 lectures	1 hours X 6= 6 hours
8. Cultivation of edible mushroom	Students will be able to comprehend about the edible mushroom, its nutritional value, cultivation techniques.	Lecture about the edible and poisonous mushroom ,cultivation techniques. Protocol writing in Lab records, Viva voce test, for internal assessment.	Spawn culture preparation of Agaricus bisporus. Straw bed preparation for the spawn. Asceptic condition maintain.	6 lectures	1 hours X 6= 6 hours

FOURTH SEMESTER

PAPER-BMCBSEHT 405 (MICROBIOLOGICAL ANALYSIS OF AIR AND WATER)

LECTURER NAME: SWARUP MUKHERJEE

Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ TOPICS TO BE COVERED	Allotted lectures	No of hours allotted
UNIT 5. Microbiological Analysis of water	Students will be able to comprehend about the analysis technique of water, helps them to gather knowledge about potability and nonpotability criteria of water.	Lecture about the different microbiological analysis of water. Explanation about the different qualitative & Quantitative test for assessment of water. Protocol writing in Lab records, Viva voce test, for internal assessment.	Lectures on microbiological assessment of water and methodology of microbial analysis of water.	5 lectures	1hours X 5= 5 hours

LESSON PLAN SCHEME OF WORK 2021-22 J.K. COLLEGE DEPATMENT OF MICROBIOLOGY SUBJECT :MICROBIOLOGY

FIFTH SEMESTER

PAPER-BMCBSEHT 501 (IMMUNOLOGY AND MEDICAL MICROBIOLOGY)

LECTURER NAME: SWARUP MUKHERJEE

Learning block	Student learning outcomes	STRATEGY	ASSESSMENT/ TOPICS TO BE	Allotted	No of hours
Learning block	(SLOs)	SHATEGI	COVERED	lectures	allotted
UNIT :9	Helps students develop the	Lecture method, ppt, pdf	1.parasitism,intermediate host and	8	1hours X
PROTOZOAL	knowledge about the	notes ,Question answer	definitive host.	lectures	8= 8 hours
DISEASE	different protozoal diseases	technique, MCQ	Malarial protozoa, life cycle in		
		discussion, , internal	human and mosquito.		
		assessment exam	3.kala –azar its causative agents,and		
			life cycle.		
			different protozoal diseases .		

LESSON PLAN
SCHEME OF WORK 2021-22
J.K. COLLEGE
DEPATMENT OF MICROBIOLOGY
SUBJECT :MICROBIOLOGY

FIFTH SEMESTER

PAPER-BMCBSEHS 502 (Applied course in clinical and industrial Microbiology)								
LECTURER NAME : SWARUP MUKHERJEE								
Learning block	Student learning outcomes (SLOs)	STRATEGY	ASSESSMENT/ TOPICS TO BE COVERED	Allotted lectures	No of hours allotted			
3. Identification of Human blood groups (slide agglutination method)	Helps students develop the knowledge about the Human blood group .	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test for internal assessment.	Human blood group detection technique. universal donor and acceptor Bombay blood group	3lectures	1hours X 3= 3 hours			
4.Perform DOT ELISA	Students will be able to comprehend about the DOT ELISA TEST	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test for internal assessment.	Carry out the practical ascetically according to the protocols provide.	3 lectures	1hours X 3= 3 hours			
5WIDAL TEST (RAPID SLIDE TEST)	Students will be able to comprehend about the WIDAL TEST (RAPID SLIDE TEST)	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test for internal assessment.	Carry out the practical ascetically according to the protocols provide.	3 lectures	1hours X 3= 3 hours			
8. STUDY OF DIFFERENTIAL MEDIA	Students will be able to comprehend about the DIFFERENTIAL MEDIA.	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test for internal assessment.	Preparation of different differential media as per syllabus	9 LECTURES	1 hours X 9=9 HOURS			
10.paper chromatography and TLC of sugars an amino acids	Students will be able to comprehend about the partition chromatography, and adsorption chromatography	Lecture about the protocol of the practical. Protocol writing in Lab records, Viva voce test for internal assessment.	Carry out the practical according to the protocols provide.	12 LECTURES	1 hours x 12=12 HOURS			

FIFTH SEMESTER

PAPER-BMCBDSHT 1 (Microbes in sustainable agriculture and development)

Learning block	Student learning outcomes	STRATEGY	ASSESSMENT/ TOPICS TO BE	Allotted	No of
	(SLOs)		COVERED	lectures	hours
					allotted
Unit 5 bio	Helps students develop the	Lecture method, ppt, pdf	1. symbiotic nitrogen	4	1 hours x 4
fertilization,	knowledge about the	notes ,Question answer	fixer, its role towards	LECTURES	=4 HOURS
phytostimulation,bio	bio fertilization,	technique, MCQ	nature.		
insecticides	phytostimulation,bio	discussion, , internal	Non symbiotic and		
	insecticides	assessment exam	associative symbiotic N ₂		
			fixer		
			3.PGPR,Phosphate solubilizer		

FIFTH SEMESTER

PAPER-BMCBDSHT 2 (INSTRUMENTATION AND BIOTECHNIQUES)

LECTURER NAME: SWARUP MUKHERJEE

LECTURER NAME . SWA	ROI WORTERJEE				
Learning block	Student learning	STRATEGY	ASSESSMENT/ TOPICS TO BE	Allotted	No of
	outcomes (SLOs)		COVERED	lectures	hours
					allotted
UNIT 1.	Students will be able to	Lecture	6. different types of	4 Lectures	1 hours
MICROSCOPY	comprehend about	method,ppt,pdf notes	microscpe, history, diagram, princip		X 4= 4
	microscopy and	,Question answer	le of of optics.		hours
	different types and	technique, MCQ	7. bright field and dark field		
	working principles	discussion, internal	microscope.		
	about e.g light	assessment exam	8. phase contrast, fluorescent		
	microscopy, and		microscope principle and uses.		
	electron microscopy,		9. electron microscope principle		
	fluorescent microscopy		,schematic diagram, uses.		
	nuoreseent interescopy		10. EM VS light & SEM and tem		
			differences.		
UNIT 2.	Students will be able to	I active mathed met		12	1 h over v
		Lecture method, ppt,	1. Principle and application of different		1 hours x
CHROMATOGRAPHY	comprehend about	pdf notes ,Question	types of chromatography.	LECTURE	12=12
	different types of	answer technique,		S	HOURS
	chromatography its	MCQ discussion,,	2.idea about partition coefficient, different		
	working principles, and	internal assessment	forces apply in chromatography.		
	uses in different areas	exam			
	1		1	l	

LESSON PLAN SCHEME OF WORK 2021-22 J.K. COLLEGE DEPATMENT OF MICROBIOLOGY SUBJECT :MICROBIOLOGY

FIFTH SEMESTER

PAPER-BMCBDSHT 2 (MICROBIAL BIOTECHNOLOGY)

Learning block	Student learning outcomes	STRATEGY	ASSESSMENT/ TOPICS TO BE COVERED	Allotted	No of
	(SLOs)			lectures	hours
					allotted
UNIT	Students will be able to	Lecture method,	1.different types of product purification	6	1 hours x
4.Microbial	comprehend about the	ppt, pdf notes	methods in industry.	LECTURES	6=6
products and	downstream procedure in	,Question answer	2.immobilization methods and their application.		HOURS
their recovery	industry, and product	technique, MCQ			
	recovery	discussion,,			
		internal assessment			
		exam			

SIXTH SEMESTER

PAPER-BMCBCCHT 601 (ENVIRONMENTAL MICROBIOLOGY)

Learning block	Student learning outcomes	STRATEGY	ASSESSMENT/ TOPICS TO BE	Allotted	No of
	(SLOs)		COVERED	lectures	hours
					allotted
UNIT 5	Students will be able to	Lecture method, ppt, pdf notes	1.Different types of bioremediation	10	1 hours x
.Positive and	comprehend about the	,Question answer technique, MCQ	methods	lectures	10=10
negative role of	bioremediation, bio	discussion, , internal assessment	2. Bioremediation against bio		HOURS
microbes in	magnification and	exam	magnification.		
environments	microbial deterioration.		3. Biodegradation of recalcitrant		
	and about microbial		products.		
	leaching		Idea about Xenobiotic		
			4.role of microbes in microbial		
			deterioration. and microbial		
			leaching		
			1.		
UNIT 6.	Students will be able to	Lecture about the different	Lectures on microbiological	5	1hours X
Water potability	comprehend about the	microbiological analysis of water.	assessment of water and	lectures	5= 5
	analysis technique of	Explanation about the different	methodology of microbial analysis		hours
	water, helps them to gather	qualitative & Quantitative test for	of water.		
	knowledge about potability	assessment of water.			
	and nonpotability criteria	Protocol writing in Lab records,			
	of water.	Viva voce test, for internal			
		assessment.			

SIXTH SEMESTER

PAPER-BMCCHS 602 (Applied course in Environmental microbiology)

Learning block	Student learning outcomes (SLOs) STRATEGY		ASSESSMENT/ TOPICS TO BE COVERED	Allotted lectures	No of hours allotted
1.Isolation of microbes	Students will be able to comprehend about the isolation technique of bacteria and fungi from different areas of soil,water and air.	Lecture method, ppt, pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	Deferent media and technique employed for isolation of bacteria and fungi	18 lectures	1 hours X 18=18 hours
2.Enrichment culture technique	Students will be able to comprehend about the enrichment technique of different categories bacteria	Lecture method, ppt, pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	Deferent media and technique employed for enrichment of the cited microorganisms in syllabus.	18 lectures	1 hours X 18=18 hours
3.Assessment of microbiological quality of water	Students will be able to comprehend about the analysis technique of water, helps them to gather knowledge about potability and nonpotability criteria of water and different tests to detect the bacteria in water.	Lecture about the different microbiological analysis of water. Explanation about the different qualitative & Quantitative test for assessment of water. Protocol writing in Lab records, Viva voce test, for internal assessment.	Lectures on microbiological assessment of water and methodology of microbial analysis of water.	18 lectures	1 hours X 18=18 hours
4.filter disc method of water analysis	Students will be able to comprehend about the determination of microbial load in water by filter disc method.	Lecture method, ppt, pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	Carry out the practical according to the protocols provide.	6 lectures	1 hours X 6=6 hours
5.Determination of BOD of water	Students will be able to comprehend about the BOD AND COD Students will be able to Question answer technique MCQ discussion, , internal assessment exam		Carry out the practical according to the protocols provide.	6 lectures	1 hours X 6=6 hours
6.ISOLATION OF RHIZOBIUM FROM ROOT NODULES	Helps students develop the knowledge about the Isolation techniques of Rhizobium	Lecture method, ppt, pdf notes ,Question answer technique, MCQ discussion, , internal assessment exam	Carry out the practical according to the protocols provide.	6 lectures	1 hours X 6=6 hours

Lesson Plan By Miss Halima Zohra

Mode - Online Session 2020-2021

(November 2020 to 31st August 2021)

CC-01 Course title: Introduction to microbiology and microbial diversity Course Code- BMCBCCHT101

Module-1	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
		General characteristics with special reference to Amoeba	2	Lecture (1 class) & feedback Audio- Visual presentation (1 class)
Protozoa	Paramecium		Lecture (1 class) Audio-visual presentation (1 class) and students' feedback.	
*Duration of each class is 1hour	10	Plasmodium	1	Lecture (1 class)
		Leishmania	1	Lecture (1 class)
		Giardia	1	Lecture (1 class)
		Students' seminar	2	2 classes
		Question & answer discussion	1	1 class
		Revision	1	1 class

CC-02

Course title: Bacteriology and virology Course Code- BMCBCCHT102

Module-2	Allotted	Sub-module	Classes	Teaching-learning methodology
Cell organization	Lectures	Cell size, shape and arrangement, glycocalyx, capsule	needed 2	Lecture (1 class) Audio- visual presentation (1 class) and students' feedback.
	20	Flagella, Endo flagella, fimbriae And pili.	2	Lecture (1 class) & feed back Audio-Visual presentation (1 class)
		Cell-wall: Composition and detailed structure of Grampositive and Gram-negative cell walls,	2	Lecture (1 class) & M.C.Q. discussion (1 class).
		Archaebacterial cell wall,	1	Lecture (1 class)

	Gram and acid-fast staining	2	Lecture (1 class)
	mechanisms		Surprise test (1 class)
*Duration of	lipopolysaccharide (LPS), Sphaeroplasts, protoplasts, and L-forms.	1	1 class lecture
each class is 1hour	Effect of antibiotics and enzymes on the cell wall	1	Lecture (1 class)
	Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell membranes.	2	Lecture (1 class) Audio-visual presentation (1 class) and students' feedback.
	Ribosomes, chromosome and plasmids.	2	Lecture (1 class) & question and answer discussion.
	Endospore: Structure, formation, stages of sporulation.	1	Lecture (1 class)
	Cytoplasmic inclusion bodies- (Chlorosome, Magnetosome, Carboxysome, Gas-vesicles),	2	Lecture (1 class) Audio-visual presentation (1 class) and students' feedback
	Question & answer discussion	1	1 class
	Revision	1	1 class

CC-03 Course title: BIOCHEMISTRY Course Code- BMCBCCHT201

Module-3	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
		First and second laws of Thermodynamics.	1	Lecture (1 class)
Thermodyna mics		Definitions of Gibb's Free Energy, enthalpy.	1	Lecture (1 class)
	10	Entropy and mathematical relationship among them.	2	Lecture (1 class) (1class) and students' feedback.

		Standard free energy change and equilibrium constant.	2	Lecture (1 class) & question and answer discussion(1class).
		High energy bond	1	Lecture (1 class)
*Duration of each class is		Biological applications of thermodynamics.	1	Lecture (1 class)
1hour		Question & answer discussion.	<u>1</u> 1	1 Class
		Revision	1	1 Class
Lipids		Definition and major classes of storage and structural lipids. Storage lipids	1	Lecture (1class)
	14	Fatty acid's structure and functions.	1	Lecture (1 class)
*Duration of each class is 1hour		Essential fatty acids. Triacylglycerols structure, functions and properties.	2	Lecture (2 classes)
		Saponification Structural lipids. Phosphoglycerides: Building blocks, General Structure functions and properties	2	Lecture (1 class) & question and answer discussion(1class).
		Structure of phosphatidyl ethanol amine and Phosphatidyl choline, Sphingolipids: building blocks, structure of sphingosine, Special.	2	Lecture (1 class) (1class) and students' feedback.
		mention of sphingomyelins, cerebrosides and gangliosides Lipid functions: cell signals, cofactors, prostaglandins,	1	Lecture (1 class)
		Introduction of lipid micelles, monolayers, Bilayers	1	Lecture (1 class)
		Quiz	2	2 Classes
		Remedial Class	1	1 Class
		Revision	1	1 Class

CC-05 Course title: MICROBIAL PHYSIOLOGY AND METABOLISM						
	Course Code- BMCBCCHT301					
Module-4	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology		
Nutrient		Passive and facilitated diffusion.	1	Lecture (1 Class)		
uptake and Transport	10	Primary and secondary active transport.	1	Lecture (1 Class)		
		Concept of uniport, symport and antiport Group translocation.	2	Lecture (2 Classes)		
		Question & answer discussion	2	2 Classes		
*Duration of		Remedial class	1	1 Class		
each class is		Tutorial class	1	1 Class		
1hour		Revision	1	1 Class		
		Internal Assessment examination	1	2 Classes		
Nitrogen Metabolism- an over view		Introduction to biological nitrogen fixation Ammonia assimilation (3 Lectures),	2	Lecture (1 class) & question and answer discussion(1class)		
an over view	_	Assimilatory nitrate reduction.	1	Lecture (1 class)		
*Duration of	7	Dissimilatory nitrate reduction, denitrification	2	Lecture (1 class) (1class) and students' feedback.		
each class is 1hour		Remedial class	1	Lecture (1 class)		
		Tutorial class	1	Lecture (1 class)		
CC-06 Course title: CELL BIOLOGY AND MOLECULAR BIOLOGY Course Code- BMCBCCHT302						
Module-4	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology		

Structure		Cell Organization—Eukaryotic (Plant and animal cells) and prokaryotic Plasma membrane: Structure and transport of small molecules	2	Lecture (1 class) Audio-visual presentation (1 class) and students' feedback
and organization of Cell	12	Cell Wall: Eukaryotic cell wall, Extracellular matrix and cell matrix interactions	1	Lecture (1 class)
		Cell-Cell Interactions- adhesion junctions, tight junctions, gap junctions, and plasmodesmata	2	Lecture (1 Class) & Questions & answers discussion (1 class).
		Mitochondria, chloroplasts and peroxisomes	2	Lecture (2 classes)
*Duration of each class is		Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane,	2	Lecture (1 Class)
1hour		cell surface protrusions, intermediate filaments, microtubules	1	Lecture (1 class)
		Remedial Class	1	1 class
		Tutorial Class	1	1 class
		Revision	1	1 class

SEC-01 Course title: BIOFERTILIZERS & BIOPESTICIDES Course Code- BMCBSEHT305

Module-5	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
Bioinsecticid es		General account of microbes used as bioinsecticides and their advantages over synthetic pesticides.	2	Lecture (1 class) & M.C.Q. discussion(1class)
	7	Bacillus thuringiensis, production, Field applications	2	Lecture (1 class) & M.C.Q. discussion(1class)

*Duration of each class is 1hour		Viruses–cultivation and field applications.	2	Lecture (1 class) & M.C.Q. discussion(1class)
		Remedial	1	1 class
•	Course title	CC-08: Microbial Genetics and Recom Course Code-BMCB		NA Technology (RDT)
Module-6	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
DNA Amplificatio		PCR: Basics of PCR, RT- PCR, Real-Time PCR	2	Lecture (1 class) Audio-visual presentation (1 class) and students' feedback
n, DNA sequencing and		Sanger's method of DNA Sequencing: Traditional and automated sequencing,,	1	Lecture (1 class)
construction of genomic and cDNA libraries.	8	shotgun sequencing, Genomic and cDNA Libraries: Preparation and uses,	2	Lecture (1 class) & question and answer discussion.
		Chromosome walking and chromosome jumping	1	Lecture (1 class)
*Duration of each class is		Remedial	1	Lecture (1 class)
1hour		Tutorial	1	Lecture (1 class)
Applications of Recombinan t DNA		Products of recombinant DNA technology: Products of human therapeutic interest insulin, hGH, antisense molecules.	2	2 classes lecture
Technology		Bt transgenic-cotton, Gene therapy.	1	Lecture (1 class)
*Duration of each class is	4	Recombinant vaccines, protein engineering (Only basic idea).	1	Lecture (1 class)

1hour

CC-09 Course title: INDUSTRIAL, FOOD AND DAIRY MICROBIOLOGY. Course Code- BMCBCCHT402

Module-7	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
Types of fermentation processes, bio-reactors		Types of fermentation processes-Solid-state and liquid-state (stationary and submerged) Fermentations	2	Lecture (1 class) & question and answer discussion.
and measurement of Fermentation		batch, fed-batch (e.g. baker's yeast) and continuous fermentations	1	Lecture (1 class)
parameters.	10	Components of a typical bio- reactor	1	Lecture (1 class)
		Types of bioreactors Laboratory	1	Lecture (1 class)
		pilot-scale and Production Fermenters	1	Lecture (1 class)
*Duration of each class is 1hour		constantly stirred tank and air-lift fermenters	1	Lecture (1 class)
		Measurement and Control of fermentation parameters-pH, temperature, dissolved oxygen, foaming and aeration	2	Lecture (1 class) Audio-visual presentation (1 class) and students' feedback
		Remedial class	1	Lecture (1 class)
		Revision	1	Lecture (1 class)
Microbial		Antibiotics (Penicillin)	1	Lecture (1 class)
production of industrial		Antibiotics (Streptomycin)	1	Lecture (1 class)
products (micro- organisms		Amino acids (lysine)	1	Lecture (1 class)
involved, media,		Vaccine (BCG vaccine)	1	Lecture (1 class)
Fermentation conditions,	18	Enzymes (amylase)	1	Lecture (1 class)
downstream processing and uses)		VitB12 production	1	Lecture (1 class)

	Hormones (insulin production-Humulin)	1	Lecture (1 class)
	Seminar presentation by Student's	3	3 Classes
*Duration of each class is	Remedial	2	2 Classes
1hour	Tutorial	1	1 Class
	Revision	1	1 Class
	Classes for Entrance Exam	4	4 Classes
	i) Topic discussion ii) M.C.Q practices.		

SEC-02

MICROBIOLOGICAL ANALYSIS OF AIR AND WATER Course Code- BMCBSEHT405

Module-8	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
Control Measures	_	Precipitation, chemical disinfection,	2	Lecture (1 class) & question and answer discussion.
*Duration of each class is 1hour	4	filtration, high temperature, UV light.	2	Lecture (1 class) & question and answer discussion.

CC-11 Course title: Immunology and Medical Microbiology Course Code- BMCBCCHT501

Module-9	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology
Immunological Techniques *Duration of each class is Thour	4	Principles of Precipitation, Agglutination, Immuno diffusion, Immuno electrophoresis ELISA, ELISPOT, Immuno fluoresence.	2	Lecture (1 class) & question and answer discussion. Lecture (1 class) & question and answer discussion.
Bacterial diseases		List of diseases of various organ systems and their causative agents.	1	Lecture (1 class)

		Respiratory Diseases: Haemophilus influenzae, Mycobacterium tuberculosis	2	Lecture (2 classes)
*Duration of each class is	10	Gastro intestinal Diseases: Escherichia coli, Salmonella typhi, Vibrio cholerae, Helicobacter pylori.	3	Lecture (2 classes) & question and answer discussion.
1hour		Others: Staphylococcus aureus, Bacillus anthracis, Clostridium tetani	2	Lecture (2 classes)
		Revision	1	1 Class
		Classes for Entrance Exam	1	1 Class
		i) Topic discussion		
		ii) M.C.Q practices.		
		DSE-1		
Course 7	Title: MICF	ROBES IN SUSTAINABLE AC	GRICULT	URE AND DEVELOPMENT
	l	Course Code- BMC		
Module-10	Allotted	Sub-module	Classes	Teaching-learning methodology
	Lectures		needed	
Secondary		Biotech feed, Silage,	2	Lecture (2 classes) & question and
Agriculture		Biomanure.	_	answer discussion.
Biotechnology	11	Biomanure, biogas	2	Lecture (2 classes)
*Duration of		Biofuels-advantages and	2	
each class is		processing Parameters		Lecture (2 classes)
1hour		Internal Examination	2	2 Classes
Inoui		Remedial Class	1	1 Class
		Classes for Entrance Exam	1	1 Class
		i) Topic discussion		
		ii) M.C.Q practices.		
		Revision	1	1 Class
GM crops		Advantages, social and environmental aspects	1	Lecture (1 class)
	6	Bt crops, golden rice,	1	Lecture (1 class)
*Duration of		Transgenic animals	1	Lecture (1 class)
each class is		Classes for Entrance Exam	1	1 Class
1hour		i) Topic discussion		
		ii) M.C.Q practices.		
		Quiz Competition	2	2 Classes
DSE-3 Course Title: MICROBIAL BIOTECHNOLOGY				
		Course Code- BMC		
Module-11	Allotted Lectures	Sub-module	Classes needed	Teaching-learning methodology

Microbes for		Bio-ethanol and bio-diesel	2	2 classes lecture
bioenergy		production.		
and		Biogas production: Methane	2	2 classes lecture
environment	14	production using microbial		
		culture.		
		Hydrogen production using	2	2 classes lecture
		microbial culture		
		Microorganisms in	2	Lecture (1 class) Surprise test (1
*Duration of		bioremediation: Degradation		class)
each class is		of xenobiotic		
1hour		Mineral recovery, removal of	2	Lecture (1 class) Audio-visual
		heavy metals from aqueous		presentation (1 class) and students'
		effluents		feedback.
		Revision	1	1 Class
		Classes for Entrance Exam	1	1 Class
		i) Topic discussion		
		ii) M.C.Q practices.		
		Remedial Class	1	Lecture (1 class)
		Tutorial Class	1	Lecture (1 class)

CC-13 Course Title: ENVIRONMENTAL MICROBIOLOGY Course Code- BMCBCCHT601

Module-12	Allotted	Sub-module	Classes	Teaching-learning methodology
	Lectures		needed	
Microorgani		Structure and function of	1	Lecture (1 class) & question and
sms and		ecosystems.		answer discussion.
their		Terrestrial Environment: Soil	1	
Habitats		profile and soil microflora .		Lecture (1 class)
		Aquatic Environment:	1	
	12	Microflora of fresh water and		Lecture (1 class)
		marine habitat.		
		Atmosphere: Aeromicro flora	1	Lecture (1 Class)
		and dispersal of microbes		
		Animal Environment: Micro	1	Lecture (1 Class)
		besin /on human body (Micro		
		biomics)& animal		
		(ruminants) body.		
		Extreme Habitats:		Lecture (1 class) Audio-visual
		Extremophiles: Microbes		presentation (1 class) and students'
*Duration of		thrivingat high &low	2	feedback.
each class is		temperatures, pH, high		
1hour		Hydrostatic & osmotic		
		pressures, salinity, &low		
		nutrient levels.		

Microbial succession in	1	Lecture (1 Class)
decomposition of plant		
organic matter. (1 Lecture)		
Internal Examination	1	1 Class
Remedial class	1	1 Class
Classes for Entrance Exam	1	1 Class
i) Topic discussion		
ii) M.C.Q practices.		
Tutorial class	1	1 class

DSE-5

Course Title: BIOMATHEMATICS AND BIOSTATICS

Course Code: BMCBDSHT5

Module-13	Allotted	Sub-module	Classes	Teaching-learning methodology
	Lectures		needed	
Biomathema		Definition of sample and	1	Lecture (1 Class)
tics		population		
Unit: 1		concept of variable	1	Lecture (1 Class)
		Frequency distribution &its	2	Lecture (1 Class)& Sum practice
	12	graphical representation		
*Duration of		Mean	1	Lecture (1 Class)
each class is		Median	1	Lecture (1 Class)
1hour		Mode	1	Lecture (1 Class)
		Standard deviation &	2	Lecture (1 Class) & Sum practice
		standard error		
		Remedial Class	1	Lecture (1 Class)
		Crash Classes	2	2 Classes
Unit: 2		Tests of statistical	2	Lecture (1 class) & question and
		significance.		answer discussion.
		Simple correlation and	2	
		regression		Lecture (1 class) & sum practice.
*Duration of		Analysis of variance	2	•
each class is	12			Lecture (2 classes)
1hour		Remedial Classes	2	2 Class
		Tutorial Class	2	
				Lecture (2 classes)
		Crash Classes	2	2 Classes
Unit: 3	10	Mathematical modelling of	2	Lecture (1 classes) & question and
		bacterial growth curve.		answer discussion
		Fermentation	2	Lecture (1 classes) & question and
				answer discussion
		control of microorganism	2	Lecture (1 classes) & question and
				answer discussion
		Remedial Class	1	1 Class

*Duration of each class is 1hour		Seminar presentation by students	3	3 Classes
Unit: 4		Sets Relations and Functions.	3	Lecture (2 classes) & question and answer discussion
		Matrices and Determinants	3	Lecture (2 classes) & question and answer discussion
		Complex Numbers and Quadratic Equations	3	Lecture (2 classes) & question and answer discussion
	38	Integral Calculus (only basic)	2	Lecture (1 classes) & question and answer discussion
		Mathematical Induction	3	Lecture (2 classes) & question and answer discussion
		Coordinate Geometry	3	Lecture (2 classes) & question and answer discussion
		Binomial Theorem and its Simple Applications	3	Lecture (2 classes) & question and answer discussion
*Duration of		Vector geometry	3	Lecture (2 classes) & question and answer discussion
each class is		Mathematical Reasoning	4	Questions & Answers Discussion
1hour		Remedial Class	3	3 Classes
		Tutorial Class	2	2 Classes
		Classes for Entrance Exam	3	3 Classes
		i) Topic discussion ii) M.C.Q practices.		
		Crash Classes	2	2 Classes
		Internal Examination	1	1 Class

LESSON PLAN

SUBJECT-MICROBIOLOGY, SESSION: 2020-21, FACULTY- Miss Tumpa Mahato

SEMESTER-I

COURSE CODE-BMCBCCHT101

COURSE TITLE- INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY

COURSE TYPE- CC1,

ALLOTED LECTURES-12 (1 LECTURE= 1HOUR)

OBJECTIVES- By the end of the topic, students should explain why green and red algae are included in the plant kingdom while other algal groups are not, describe the three features that distinguish green algae from land plants, list the habitats of green algae, describe the economic importance of algae, distinguish the main morphological forms shown by green algae and name one example of each type, explain the terms sporophyte, gametophyte and alternation of generations.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING-LEARNING METHODOLOGY
UNIT 2: Diversity	General characteristics of algae	1	A main aim of the course is to spark the student's interest and
of Microbial	Occurrence and habitat of algae	1	curiosity in phycology and to promote their active participation
world	Thallus organization and ultra structure of Algae	2	during the lectures:
	Pigments, flagella, eye spot food reserves	2	The teaching activities are as follows:
	Vegetative reproduction of Algae	1	i) Lectures
	Asexual reproduction	1	Graphic support will be used in the lectures (PowerPoint slides).
	Sexual reproduction	2	ii) Seminars iii) Evaluation: A test will be
	Applications of algae in agriculture	1	performed at the end of the course that will include short
	Applications of algae in industry, environment and food	1	assay questions.

COURSE CODE-BMCBCCHT102

COURSE TITLE- BACTERIOLOGY AND VIROLOGY

COURSE TYPE- CC2

ALLOTED LECTURES-21

OBJECTIVES- The discussion on how viruses enter target cells, amplify their genomes and exit from these target cells will give a general view on the intimate relationship of viruses and cells, and will highlight the importance of host factors for virus survival. The discussion on the expansion of viruses within host organisms will emphasize the ongoing struggle between viruses with the immune system, and the students will also be provided with a broad and general knowledge of modern Virology.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit6: History & classification	Viruses: History and development of virology	2	i) Lectures: Graphic support will be used in the lectures (Powerpoint slides).
of virus	Structural organization and chemistry of viruses (TMV, Animal Viruses and Bacteriophages)	1	ii) Seminers: Some important topics in Virology will be given within seminars. The students will actively
	Classification of viruses according to ICTV	1	participate. Topics will be chosen from articles published in relevant journals and students will present the
	Baltimore scheme of viral classification	1	data to be discussed.
	Viral assay (Plaque assay and Pock test)	1	
Unit7: Lytic and lysogeny cycle	Lytic cycle of Bacteriophages with special reference to E. coli and T4	2	iii) Question answer discussion,
	Lysogeny cycle	1	iv) Evaluation: Continuous evaluation: the participation
	Lysogenic conversion	1	of students in the practical work and the seminars will
	Induction and significance	1	be evaluated.
	One step multiplication	1	
	Role of Different repressor in lytic and lysogenic cycle	2	
	Inducer protein in lytic and lysogeny cycle	2	
Unit8: Prions,	A general account on Prions	1	v)Final evaluation: A test will be performed at the end
viroid's, virusoids etc.	Viroids and Virusoids	2	of the course that will include short assay questions
	Satellite virus with special emphasis On its structure and replication.	2	

COURSE TITLE- BIOCHEMISTRY

COURSE TYPE- CC-3

ALLOTED LECTURES-12

OBJECTIVES- Students will be able to describe the structure of enzyme, effect of substrate concentration and product inhibition on the behavior of enzymes and also calculate the kinetic parameters V_{max} and K_{M} from enzyme saturation data using Line weaver-Burk methods.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit6. Enzymes	Structure of enzyme: Apoenzyme and cofactors,	1	i) Lectures: Graphic support will be used in
	Prosthetic group-TPP, Coenzyme NAD, metal cofactors	1	the lectures (PowerPoint slides).
	Classification of enzymes	1	ii) Seminers: Some
	Mechanism of action of enzymes: active site, transition state complex and activation energy	1	important topics in enzymology will be given within seminars.
	Lock and key hypothesis, and Induced Fit hypothesis	1	iii)Doubt clearing
	Significance of hyperbolic, double reciprocal plots of enzyme activity, Km	1	iv) Tutorial lectures-2
	Allosteric mechanism Definition softerms—enzyme unit, specific activity and turnover number	1	v) Evaluation- Class
	Multi enzyme complex: pyruvate dehydrogenase	1	test(10 marks)
	Isozyme: lactate dehydrogenase	1	
	Effect of pH and temperature on. Enzyme activity	1	
	Enzyme inhibition: competitive	1	
	Non-competitive and mixed inhibition	1	

SEMESTER-III,

COURSE CODE-BMCBCCHT301

COURSE TITLE- MICROBIAL PHYSIOLOGY AND METABOLISM

COURSE TYPE- CC-5

ALLOTED LECTURES-16

OBJECTIVES- After this course, students will be able to discuss which components are necessary for the production of energy, identify the key energy molecule of the body, understand which type of cellular respiration produces more energy

and also compare the processes of aerobic and anaerobic respiration in terms of products formed, need for oxygen, and relative amounts of energy transferred.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit3: Chemo heterotrophic	Concept of aerobic respiration	1	i)Lectures with PowerPoint presentation
Metabolism- Aerobic Respiration	Anaerobic respiration	1	
Respiration	Fermentation	1	ii) Question answer discussion and doubt clearing session
	Sugar degradation path ways i.e. EMP	1	and doubt clearing session
	ED Pathway	1	iii) Tutorial lactures 2
	Pentose phosphate pathway	1	iii) Tutorial lectures-2 Remedial lectures-1
	TCA cycle	2	
	Electron transport chain: components of respiratory chain	2	iv) Evaluation- Class test(10 marks)
	Comparison of mitochondrial and bacterial ETC	2	
	Electron transport phosphorylation	1	
	Uncouplers	1	
	Inhibitors	2	

COURSE CODE-BMCBCCHT302

COURSE TITLE- CELL BIOLOGY AND MOLECULAR BIOLOGY

COURSE TYPE- CC-6

ALLOTED LECTURES-04

OBJECTIVES- The students should be able to understand how bacteria regulate gene expression, examples of important regulatory systems and how current genomic analysis techniques promote understanding of regulation in individual bacterial species.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit 6 Gene Regulation	Positive control and negative control	1	i)Lectures with powerPoint presentation

Inducible system and repressible system	1	ii) Question answer discussion iii) Tutorial lectures-2
Lac Operon and Catabolite repression	1	Remedial lectures-1 iv) Evaluation- Class
Try operon,	1	test(10 marks)

COURSE CODE-BMCBCCHT305

COURSE TITLE- BIOFERTILIZERS & BIOPESTICIDES

COURSE TYPE- SEC-1

ALLOTED LECTURES-10

OBJECTIVES- The students should recognize the different types of fertilizer and advantages of using biofertilizer and understand the conceptual knowledge about biofertilizer and their way of manufacturing and application details.

UNITS	TOPICS TO BE COVERED	NO. OF LECTUR ES	TEACHING- LEARNING METHODOLOGY
Unit1Biofer tilizers	General account of the microbes used as biofertilizers for various crop plants	2	i)Lectures with powerPoint presentation
	Advantages of biofertilizer over chemical fertilizers	1	ii) Seminers: Some important topics related
	SymbioticN2 fixers: Rhizobium-Isolation, characteristics, types, inoculum production	1	to agricultural microbiology will be given within seminars.
	And field application, legume/pulses plants	1	The students will actively participate.
	Frankia-Isolation, characteristics	1	Topics will be chosen from articles published in relevant journals and students will present the
	Alder Casurina plants, non-leguminous crop Symbiosis	1	
	Cyanobacteria	1	data to be discussed. ii) Question answer
	Azolla-Isolation, characterization, mass multiplication	1	discussion iii) Tutorial lectures-2 Remedial lectures-1
	Role in rice cultivation, Crop response, field application	1	iv) Evaluation- Class test(10 marks)

SEMESTER- IV

COURSE CODE-BMCBCCHT401

COURSE TITLE- MICROBIAL GENETICS AND RECOMBINANT DNA TECHNOLOGY (RDT)

COURSE TYPE- CC-8

ALLOTED LECTURES-24

OBJECTIVES- Students will be able to understand the types of gene mutations, describe what occurs during each type of mutation, determine a harmful, helpful, and indifferent mutation in living things. Students will also be able to explain how bacterial cells can acquire new genes through conjugation, describe how a population of bacteria can evolve to become antibiotic resistant, use specific, real-world examples to show how quickly bacteria may develop resistance to new antibiotics and understand how rapidly bacteria reproduce, and discuss how this reproduction rate makes it possible for populations of bacteria to quickly adapt to new antibiotics.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit1 Mutations	Mutations and mutagenesis: Definition	1	i)Lectures with PowerPoint
	Types of Mutations	1	presentation ii) Seminar:
	Physical Mutagens	1	Important topic will be provided to the
	Chemical Mutagens	2	students for the seminar presentation
	Molecular basis of mutations	2	
	Ames test	1	
Unit2 Plasmids	Types of plasmids–F plasmid, R Plasmids, Colicinogenic plasmids	1	iii) Question answer
	Ti plasmids	1	discussion iv) Tutorial lectures- 2
	Linear plasmids, Yeast-2µ plasmid	1	Remedial lectures-1
	Plasmid replication and partitioning	1	
	Host range, Plasmid incompatibility	1	
	Plasmid amplification	1	
	Regulation of copy number	1	
	Curing of plasmids	1	
Unit3Mechan isms of Genetic	Transformation-Discovery, mechanism of natural competence	2	v) Evaluation- Class test (20 marks)
Exchange	Conjugation-Discovery, mechanism, Hfr and F'strains,	2	
	Interrupted mating technique	1	

Transduction-Generalized transduction	1	
Specialized transduction,	1	
LFT & HFT lysates	1	

COURSE CODE-BMCBSEHT405

COURSE TITLE- MICROBIOLOGICAL ANALYSIS OF AIR AND WATER

COURSE TYPE-SEC-2

ALLOTED LECTURES-04

OBJECTIVES- Afer learning about the diseases, students can share these information to their family members so that they will become aware of waterborne diseases and each group students will also make a poster to hang in the classroom about particular disease.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit 4. Water Microbiology	Water borne pathogens	2	i) Lectures with PowerPoint presentation
	Water borne diseases.	2	ii)Evaluation: MCQ Test

SEMESTER- V

COURSE CODE-BMCBCCHT501

COURSE TITLE- IMMUNOLOGY AND MEDICAL MICROBIOLOGY

COURSE TYPE- CC-11

ALLOTED LECTURES-12

OBJECTIVES- The students will be able to describe the roles of the immune system or organ in both maintaining health and contributing to disease, identify the cellular and molecular basis of immune responsiveness.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOG Y
Unit2 Immune Cells and Organs	Structure, Functions and Properties of: Immune Cells—Stem cell	1	i)Lectures with powerPoint presentation
	T cell	1	ii) Question answer
	B cell	1	discussion

	NK cell Macrophage, Neutrophil Eosinophil, Basophil, Mast cell, Dendritic cell	1	
	Immune. Organs–Bone Marrow	1	
	Thymus, Lymph Node, Spleen	1	-
	GALT, MALT, CALT	1	
Unit10 Fungal diseases	Brief description of each of the following types of mycoses One representative Disease to be studied with respect to transmission symptoms and prevention Cutaneous mycoses: Tineapedis (Athlete's foot)	2	iii) Tutorial lectures-2 Remedial lectures- 1 iv) Evaluation-
	Systemic mycoses: Histoplasmosis	1	Class test(10 marks)
	Opportunistic mycoses: Candidiasis	2	

COURSE CODE-BMCBCCHT502

COURSE TITLE- APPLIED COURSE IN CLINICAL AND INDUSTRIAL MICROBIOLOGY

COURSE TYPE- CC-12

ALLOTED CLASSES-30

OBJECTIVES- The students will be able to identify various bacterial flora associated with skin and urinary tract based on their colony morphology and biochemical test e.g. IMViC, TSI, Nitrate reduction, Oxidase and Catalase test. From demonstrations, student will be able to understand industrial production of amino acid, enzymes and alcohol.

UNITS	TOPICS TO BE COVERED(Practical)	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
1.Microbial fermentations for the production and estimation (qualitative and quantitative) of (in practical exam only demonstration will be asked)	(a)Enzymes: bacterial alpha amylase from <i>Bacillus megaterium</i> and <i>Bacillus subtilis</i>	1	Lectures with PowerPoint presentation showing various images regarding
	(b)Amino acid: Glutamic acid using Corynebacterium glutamicum	1	industrial bulk production of various products and also the principle of the particular experiment will
	(c)Organic acid: Citric acid by using Aspergillus niger	1	be discussed.
	(d)Alcohol: Ethanol by Saccharomyces cerevisiae	1	

11. Study/demonstration of	Different parts of fermentor	1	
different parts of fermentor.	_		

UNITS	LABORATORY	NO. OF	TEACHING-
	WORK	PRACTIC	LEARNING
		AL	METHODOLOGY
		CLASSES	
6. Examination of Bacteria by using Urine dip	Sample collection,	3	Discussion about the aim
slide & study about UTI	Inoculation, Incubation,		and principle of the
	Next day Observation		experiment and the
			students will have to
			perform the experiment in
			laboratory.
7. Study of bacterial flora of skin by swab	Sample collection,	3	The experimental results
method.	Media preparation,		and their applications will
	inoculation and		be discussed to promote
	incubation, next day		the understanding of the
	Observation		whole experimental set-
			up.
9. Identify bacteria E. coli and Staphylococcus	Media preparation,	5	
on the basis of cultural, morphological and	inoculation and next		
Biochemical Characteristics-a. IMViC, TSI,	day reagent preparation		
Nitrate reduction, Oxidase and Catalase test	and observation		
Titrate reduction, Oxidase and Catalase test	and observation		

COURSE CODE-BMCBDSHT1

COURSE TITLE- MICROBES IN SUSTAINABLE AGRICULTURE AND DEVELOPMENT

COURSE TYPE- DSE-1

ALLOTED CLASSES-08

OBJECTIVES- The students will be able to understand the importance of soil, how soil layers are formed and by which process soil can be enriched, about phosphate solubilizing, nitrogen fixing, cellulose and hemicelluloses degrading bacteria.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit2Mineralization of Organic & Inorganic Matter in Soil	Mineralization of cellulose	1	i)Lectures with powerPoint presentation
Watter in 50ii	Hemicelluloses	1	ii) Question answer
	Lignocelluloses	1	discussion
	Lignin and humus,	1	iii) Evaluation- Class test(10 marks)
	Phosphate	1	
	Nitrate, silica,	2	

Potassium	1	

COURSE CODE-BMCBDSHT2

COURSE TITLE- INSTRUMENTATION AND BIOTECHNIQUES

COURSE TYPE- DSE-2

ALLOTED CLASSES- 10

OBJECTIVES- After this class, students should be able to understand electromagnetic wave and Beer's Lambert law and its derivation, solve the numerical problems related to this topic.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
Unit4. Spectrophotometry	Principle and use of study of absorption spectra of biomolecules	2	i)Lectures with powerPoint presentation
	Beer's Lambert law and its derivation	2	ii) Question answer
	Instrumentation for UV- visible and infrared spectrophotometry	2	discussion iii) Tutorial class-2 iv) Evaluation- Class test(10 marks)
	Analysis of Biomolecules using UV and visible range	2	
	Colorimetry and turbidometry	2	test(10 marks)

COURSE CODE-BMCBDSHT

COURSE TITLE- MICROBIAL BIOTECHNOLOGY

COURSE TYPE- DSE-3

ALLOTED CLASSES- 08

OBJECTIVES- The students will be able to explain microbial based transformation of steroids, sterols and production of high fructose syrup, cocoa butter substitutes.

UNITS	TOPICS TO BE COVERED	NO. OF LECTUR ES	TEACHING- LEARNING METHODOLOGY
Unit3. Applications of Microbes in Bio transformations	Microbial based transformation of steroids	2	i)Lectures with PowerPoint presentation
	Microbial based transformation of sterols	2	ii) Question answer discussion

Bio-catalytic processes and their Industrial applications: Production of high fructose syrup	2	iii) Evaluation- Class test(10 marks)
Production of cocoa Butter substitute	2	

SEMESTER- VI

COURSE CODE-BMCBCCHT601

COURSE TITLE- ENVIRONMENTAL MICROBIOLOGY

COURSE TYPE- CC-13

ALLOTED LECTURES- 14

OBJECTIVES- After this course, student will be able to explain about different types of interactions of microbes with

microbes, plants and animals.

UNITS	TOPICS TO BE COVERED	NO. OF LECTUR ES	TEACHING- LEARNING METHODOLOGY
Unit2 Microbial Interactions	Microbe interactions: Mutualism	2	i)Lectures with PowerPoint presentation
	Synergism,	1	ii) Question answer discussion and
	Commensalism	1	students feedback
	Competition,	1	iv) Evaluation- Class test(20 marks) assay type question
	Amensalism,	1	
	Parasitism, predation	1	
	Microbe-Plant interaction: Symbiotic	2	
	Nonsymbiotic interactions	1	
r	Microbe-animal interaction: Microbes in ruminants	2	
	Nematophagus fungi	1	
	Symbiotic Luminescent bacteria	1	

COURSE CODE-BMCBDSHS4

COURSE TITLE- PROJECTWORK

COURSE TYPE- DSE-3

ALLOTED LECTURES-30

OBJECTIVES- Student will be able to apply their practical knowledge that is developed during previous semester practical classes and the students will get immense help from this project work for their higher education and further research works.

UNITS	TOPICS TO BE COVERED	NO. OF	TEACHING-
		LECTURES	LEARNING
			METHODOLOGY
1. Study of algal diversity of a	Topic of the project will be selected	30	Open discussion about the
pond	based on the topics mentioned on		topic, Design of the
2. Study of microbial diversity	the syllabus.		experiment, Hands on
of different soil, air condition			laboratory work
etc.)			
3. Antimicrobial activity of			
different plant extracts.			
4.ANY OTHER PROJECTS			
ON MICRBIOLOGY			

COURSE CODE-BMCBDSHT6

COURSE TITLE- BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS

COURSE TYPE- DSE-4

ALLOTED LECTURES-08

OBJECTIVES- The students should be able to understand about bioethics in biological sciences so that they can able to analyze issues using scientific facts, ethical principles, and reasoned judgment.

UNITS	TOPICS TO BE COVERED	NO. OF LECTURES	TEACHING- LEARNING METHODOLOGY
UNIT6. Bioethics	Introduction to ethics and bioethics, framework for ethical decision making. Ethical Conflicts in biological sciences-interference with nature, bioethics in health. Artificial Reproductive technologies, prenatal diagnosis Ethics in transplantation and stem cell research, Human and animal experimentation Agricultural biotechnology-Genetically engineered food, environmental risk, labeling and public opinion Sharing benefits and protecting future generations-Protection of environment and biodiversity Biopiracy	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i)Lectures with PowerPoint presentation ii) Seminar: Important topic will be provided to the students for the seminar presentation iii) Question answer discussion iv) Evaluation: Class test(20 marks)

LESSON PLAN SUBJECT- MICROBIOLOGY SESSION- 2020-21 BY- Miss Yanki Lama

SEMESTER-I

Course Code-BMCBCCHT101

Course Title- INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY

MODULE	OBJECTIVE	ALLOTED	SUB- MODULE	NO.OF	TEACHING-
NAME		LECTURES		LECTURES/ SUB-MODULE	LEARNING METHODOLOGY
Module-2 Diversity of	By the end of the lesson,	15 lectures (15 hours)	General characteristics of fungi	1	Lectures, ppt, mcq, discussion, class test,
Microbial World	students will gain	(10 110015)	Habitat, distribution	1	assignment, doubt clearing session
, vond	understanding about fungi and		Nutritional Requirements	1	erearing session
	will be able to discuss its characteristics, reproductive		Fungal cell ultra-structure, thallus organization and aggregation	2	
	nature and economic		Fungal wall structure and synthesis	1	
	importance.		Asexual reproduction	1	
			Sexual reproduction, heterokaryosis, heterothallism	2	
			Parasexual Mechanism	1	
			Economic importance of fungi with examples in agriculture, environment	2	
			Industry, medicine, food	1	
			Biodeterioration and mycotoxins	1	
Module-3 An overview of Scope of Microbiology	Students will know the overall scope of the	5 lectures (5 hours)	Introduction of the subject and members of microbial world and their distribution in nature	2	Lectures, ppt, open discussion
	microbiology.		Different branches of microbiology	1	
			Importance and scope of microbiology	1	
			Scope of microbiology as a modern science and applied areas of microbiology	1	

Course Code-BMCBCCHT102 Course Title- BACTERIOLOGY & VIROLOGY Course Type- CC-2

Course Type (I
MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-4 Growth and nutrition	Students will be able to understand the nutritional requirements of bacteria and types of bacteria based on nutrition, effect of oxygen on microbial growth and different types of culture media.	8 lectures (8 hours)	Nutritional requirement Nutritional types (Definition&Examples)— Photoautotroph; Photo-organotrophs; Chemo-lithotrophs (Ammonia,Nitrate,Sulph ur, Hydrogen, Iron Oxidizing bacteria); Chemo-organotrophs Effects of oxygen on growth; Classification on the basic of oxygen requirement & tolerance Culture media: components of media- natural and synthetic media, chemically defined media, complex media Selective & differential media Transport media, enriched and enrichment media	1 2 2 1	Lectures, ppt, mcq discussion, class test, assignment
Module-5 Bacterial reproduction and Growth Characteristics	Students will be able to understand the microbial growth pattern, kinetics and characteristics.	10 lectures (10 hours)	Growth curve Generation time; Growth Kinetics Asynchronous & synchronous growth Batch & Continuous culture Measurement of growth Factors affecting growth	2 1 2 1 2 2	Lectures, ppt, open discussion, mcq discussion, class tes, doubt clearing session

SEMESTER-II

Course Code-BMCBCCHT201 Course Title- BIOCHEMISTRY

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-3 Structures know about basic	8 lectures (8 hours)	DNA Structure: Miescher to Watson and Crick-historic perspective	2	Lectures, ppt, mcq discussion, class test, assignment	
and RNA/Genet ic Material		of structure and	DNA structure, Salient features of double helix, Types of DNA	2	
	nucleic acids.		Types of genetic material, denaturation and renaturation, cot curves	2	
			DNA topology-linking number, topoisomerases	1	
			Organelle DNA- mitochondria and chloroplast DNA	1	
Module-7 Vitamins	Students will understand the importance of	4 lectures (4 hours)	Classification and characteristics with suitable examples	2	Lectures, ppt, open discussion, mcq discussion, class test
	vitamins in biological systems.		Sources and importance	2	

SEMESTER-II

Course Code-BMCBCCHS202

Course Title- LABORATORY TECHNIQUES IN MICROBIAL DIVERSITY AND BIOCHEMISTRY

Course	Type- CC-4	I	
EXPT NO.	EXPERIMENT NAME	OBJECTIVE (After attending the experiments the students will be able to)	WORK OUT PLANNING
1	Microbiology Good Laboratory Practices and Biosafety	Specify laboratory rules and safety practices	Lectures-2, ppt
2	To study the principle and applications of important instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter) used in the microbiology laboratory	Describe the basic requirements in a microbiology laboratory and operate and explain the functions of various equipments used in microbiological lab	Day I- Lectures-3, ppt Day II- Lectures-3, ppt
3	Preparation of culture media for bacterial cultivation	Prepare different culture media for growth and maintenance of microorganisms	Work out time-day I- 3 hrs Work out time-day II- 3 hrs
4	Sterilization of medium using Autoclave and assessment for sterility	Assess the sterilization of medium using autoclave	Work out time-day I- 3 hrs Work out time-day II- 3 hrs
5	Demonstration of the presence of microflora in the environment by exposing nutrient agar plates to air	Identification of general bacteria present in air	Work out time-day I- 3 hrs Work out time-day II- 3 hrs
6	Staining Techniques: Gram Staining, Endospore Staining, Simple Staining, Negative Staining	Perform different staining techniques to study bacteria	Work out time- 3 hrs for each staining
7	Demonstration of motility of bacteria by Hanging Drop Technique	Visualize unstained living cells and its motility	Work out time- 3 hours
8	Isolation of pure cultures of bacteria by streaking method	Prepare and maintain pure cultures	Work out time-day I- 3 hrs Work out time-day II- 3 hrs
9	Estimation of CFU count by spread plate method/pour plate method.	To estimate the number of viable bacterial cells in a sample	Work out time-day I- 3 hrs Work out time-day II- 3 hrs for each experiment.
10	Study of <i>Rhizopus, Penicillium</i> , <i>Aspergillus</i> using permanent mounts	Describe the structure, morphology and identify different fungi	Total- 3 hrs for visualization, identification and writing in notebook
11	Study of <i>Spirogyra</i> and <i>Chlamydomonas</i> , <i>Volvox</i> using permanent Mounts	Describe the structure, morphology and identify different algae	Total time- 3 hrs for visualization, identification and writing in notebook
12	Study of the following protozoans using permanent mounts/photographs: Amoeba, Paramecium and Euglena	Describe the structure, morphology and identify different protozoans	Total time- 3 hrs for visualization, identification and writing in notebook
13	Biochemical Estimation: DNA (DPA Method),RNA(Orcinol Method), Sugar (DNSA Method),Amino Acid (Ninhydrin Method) and Protein(Lowry's Method)	Estimate different biomolecules	Work out time- 3 hrs for each estimation

SEMESTER-III

Course Code-BMCBCCHT301

Course Title-MICROBIAL PHYSIOLOGY AND METABOLISM

Course Type- CC-5

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-4 Chemoheterotrophic Metabolism- Anaerobic respiration and fermentation	By the end of the lecture, the students will understand the concept of anaerobic respiration	6 lectures (6 hours)	Anaerobic respiration with special reference to dissimilatory nitrate reduction(Denitrification; nitrate/nitrite and nitrate/ammonia respiration; fermentative nitrate reduction)	2	Lectures, ppt, mcq discussion, class test, doubt clearing session
	and fermentation.		Fermentation-Alcohol fermentation and Pasteur effect	2	
			Lactate fermentation- homofermentative and heterofermentative pathways	2	

Course Code-BMCBCCHT302

Course Title- CELL BIOLOGY AND MOLECULAR BIOLOGY

MODULE	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-2 Cell Signaling	By the end of the lecture, the students will gain concept of cell signaling pathways.	8 lectures (8 hours)	Signaling molecules and their receptors Function of cell surface receptors Pathways of intra-cellular receptors—Cyclic AMP pathway Cyclic GMP MAP kinase pathway	1 1 2 2 2 2	Lectures, ppt, mcq discussion, class test, doubt clearing session

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-6 Translation in Prokaryotes	Translation in understand the	5 lectures (5 hours)	Genetic code and its characteristics Charging of tRNA, aminoacyl RNA synthetases Mechanisms of initiation, elongation and termination of polypeptides in prokaryotes Comparative study of	2	Lectures, ppt, mcq discussion, class test, open discussion, doubt clearing session
			Comparative study of translation of prokaryotes with that of eukaryotes Inhibitors of protein synthesis in prokaryotes and eukaryote, post translational modifications (Only Basic Idea)	1	

Course Code-BMCBSEHT305

Course Title- BIOFERTILIZERS AND BIOPESTICIDES
Course Type- SEC-1

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-4 Mycorrhizal Biofertilizers	Students will understand the importance of mycorrhizal biofertilizers.	5 lectures (5 hours)	Importance of mycorrhizal inoculum Types of mycorrhizae and associated plants Mass inoculum	2	Lectures, ppt, mcq discussion, class test
			production of VAM	1	
			Field applications of Ectomycorrhizae and VAM	1	

SEMESTER-IV

Course Code-BMCBCCHT401

Course Title- Microbial Genetics and Recombinant DNA Technology (RDT)

Course Type- CC-8

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-5 Methods in Molecular	Students will learn about the transformation	12 lectures (12 hours)	Transformation of DNA: Chemical method, Electroporation	1	Lectures, ppt, mcq discussion, class test,
Cloning	methods and their use in genetic engineering and		Gene delivery: Microinjection, electroporation, biolistic method (gene gun)	listic 2	assignment
	analysis techniques of		Liposome and Viral mediated delivery	2	
	DNA, RNA and protein.		Agrobacterium- mediated delivery	1	
			DNA, RNA and Protein analysis: Agarose gel electrophoresis	1	
			Southern-and Northern-blotting techniques, dot blot	2	
			DNA microarray analysis	1	
			SDS-PAGE	1	
			Western blotting	1	

Course Code-BMCBCCHT402

Course Title- Industrial, food and dairy microbiology

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-1 Foods as a substrate for	By the end of lesson, the students will be	4 lectures (4 hours)	Intrinsic factors that affect growth and survival of microbes in foods	1	Lectures, ppt, mcq discussion, class test,
microorganisms	able to understand about the factors that determine		Extrinsic factors that affect growth and survival of microbes in foods	1	assignment
	the presence,		Natural flora of food	1	
	growth and survival of microorganisms in food.		Source of contamination of foods in general	1	

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-2 Microbial	Students will get the	10 lectures (10 hours)	Principles, Spoilage of vegetables, fruits,	2	Lectures, ppt, mcq discussion, class
Contamination & Spoilage of	understanding of		meat, eggs, fish,	2	test, assignment doubt clearing
various foods	microorganisms associated with food, their role		milk and milk products,	2	session
	in spoilage and		bread, canned foods	1	
	characterization.		Detection of spoilage and characterization	3	
Module-3 Principles and methods of food	Students will learn about different food	10 lectures (10 hours)	Principles, physical methods of food preservation: temperature-low, high	3	Lectures, ppt, mcq discussion, class test, open
preservation	preservation		Canning, drying	1	discussion,
	techniques.		Irradiation, hydrostatic pressure,	1	doubt clearing session
			high voltage pulse, microwave processing	1	
			Aseptic packaging,	1	
			Chemical methods of food preservation: salt, sugar, organic acids,	1	
			SO ₂ , nitrite and nitrates, ethylene oxide	1	
			antibiotics and bacteriocins	1	

Course Code-BMCBSEHT405
Course Title-Microbiological analysis of air and water
Course Type- SEC-2

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-1 Aeromicrobiology	Students will understand the significance of air borne	4 lectures (4 hours)	Bioaerosols, Airborne microorganisms (bacteria, Viruses, fungi) Their impact on human health and environment	1	Lectures, ppt, mcq discussion
	pathogens.		Significance in food and pharma industries Operation theatres, allergens	1 1	
Module-4 Control measures	Students will learn the control measures-bioaerosols.	4 lectures (4 hours)	Fate of bioaerosols Inactivation mechanisms - UV light, HEPA filters, desiccation, Incineration	2 2	Lectures, ppt, mcq discussion

SEMESTER-V

Course Code-BMCBCCHT501

Course Title- Immunology and Medical Microbiology Course Type- CC-11

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-4 Generation of Immune Response and Tumour	By the end of the lesson, students will understand the immune	7 lectures (7 hours)	Primary and Secondary Immune Response; Generation of Humoral Immune Response (Plasma and Memory cells)	2	Lectures, ppt, class test, doubt clearing session
Immunology	responses, humoral, cell mediated and tumor immunology.		Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Costimulatory signals)	2	
			Killing Mechanisms by CTL and NK cells	1	
			Types of tumors, tumor Antigens, causes and therapy for cancers	2	
Module-8 Viral diseases	Students will become aware about different viral diseases.	8 lectures (8 hours)	List of diseases of various organ systems and their causative agents. The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control: Polio	1	Lectures, ppt, class test, assignment
			Herpes	1	
			Hepatitis	1	
			Dengue	1	
			AIDS	1	
			Influenza with brief description of swine flu	1	
			Ebola	1	
			Chikungunya, Japanese Encephalitis	1	

Course Code- BMCBDSHT2

Course Title- INSTRUMENTATION AND BIOTECHNIQUES

Course Type- DSE-2

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-5 Centrifugation	By the end of the lesson, the students will	12 lectures	Centrifugation (Preparative and analytical centrifugation)	2	Lectures, ppt, class test
	learn about the different types	(12 hours)	fixed angle and swinging bucket rotors	2	
	of centrifugation		RCF And Sedimentation coefficient	2	
	techniques.		Differential centrifugation,	2	
			Density gradient Centrifugation and	3	
			Ultracentrifugation	1	

Course Code- BMCBDSHT3

Course Title- MICROBIAL BIOTECHNOLOGY

Course Type- DSE-3

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-1 Microbial Biotechnology	Students will understand about the	10 lectures (10 hours)	Microbial biotechnology: Scope and its applications in human therapeutics	2	Lectures, ppt, class test, assignment
and its Applications	importance of microbial		agriculture (Biofertilizers, PGPR, Mycorrhizae),	2	
	technology and its		Environmental	1	
	and its applications.		Food technology	1	
			Use of prokaryotic and eukaryotic microorganisms in biotechnological applications	2	
			Genetically engineered microbes for industrial application	2	

SEMESTER-VI

Course Code-BMCBCCHT601

Course Title- ENVIRONMENTAL MICROBIOLOGY

Course Type- CC-13

course Type c		ı	I	1	
MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-4 Waste Management	Students will gain understanding about the solid and liquid waste management.	14 lectures (14 hours)	Solid Waste management: Sources and types of solid waste Methods of solid waste disposal(composting and sanitary landfill) Liquid waste management: Composition and strength of sewage (BOD and COD) Primary, secondary oxidation ponds,	2 2	Lectures, ppt, mcq discussion, class test, doubt clearing session
			trickling filter Activated sludge	1 2	
			process and septic tank		
			tertiary sewage treatment	2	

Course Code-BMCBDSHT6

Course Title- BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS

Course Type- DSE-6

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-1 Introduction to biosafety	Students will gain understanding about biosafety	4 lectures (4 hours)	Overview of biosafety Risk assessment, Cartagena protocol on Biosafety	1 1	Lectures, ppt, mcq discussion, class test
	and its risk assessment.		GMOs: Concerns and challenges transgenic technology	1	
			Future opportunities and challenges	1	

MODULE NAME	OBJECTIVE	ALLOTED LECTURES	SUB- MODULE	NO.OF LECTURES/ SUB-MODULE	TEACHING- LEARNING METHODOLOGY
Module-2 International Regulatory bodies	Students will understand about the biosafety of GM	7 lectures (7 hours)	National regulatory bodies, Biosafety of Genetically engineered Products	1	Lectures, ppt, mcq discussion, class test, assignment, doubt clearing
	products.		Genetically engineered products and recombinant DNA technology	2	session
			Risk assessment of RDT products, Regulating recombinant DNA technology	2	
			Permit for movement and import of GMOs	1	
			Good Laboratory biosafety practices	1	
Module-3	Students will	4 lectures	Concept of IPR, Designs	1	Lectures, ppt, mcq discussion, class
Introduction to Intellectual Property Rights	understand the concept of different IPR.	(4 hours)	Trademarks TM, Trade Secret(TS), Domain Names	1	test, assignment, doubt clearing session
			Geographical Indications,	1	
			Copyright	1	
Module-4	Students will	4 lectures	History of Indian Patent System	2	Lectures, ppt
History and Evolution of Patent Law	learn about the history of IPR.	(4 hours)	Patent Laws in other countries.	2	
Module-5 Classification of Patents	Students will gain understanding	10 lectures (10 hours)	Classification of patents in India, Classification of patents by WIPO	3	Lectures, ppt, mcq discussion, class
	about the different types of patent.		Categories of Patent, Special Patents	2	test,open discussion, doubt clearing session
			Patenting Biological products	2	
			Classification of patents	1	